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ABSTRACT

Flawed problem comprehension leads students to produce flawed
implementations. However, testing alone is inadequate for checking
comprehension: if a student develops both their tests and imple-
mentation with the same misunderstanding, running their tests
against their implementation will not reveal the issue. As a solution,
some pedagogies encourage the creation of input–output exam-
ples independent of testing—but seldom provide students with any
mechanism to check that their examples are correct and thorough.

We propose a mechanism that provides students with instant
feedback on their examples, independent of their implementation
progress. We assess the impact of such an interface on an introduc-
tory programming course and find several positive impacts, some
more neutral outcomes, and no identified negative effects.
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1 INTRODUCTION

In early algebra lessons, it is commonplace to challenge students to
complete input–output tables that correspond to function specifica-
tions [18, 27]. In exploring these input–output examples, students
check that their understanding of a function matches its actual
behavior [18]. Software tests—which are usually also articulated as
input–output pairs—play a similar role in computing. However, soft-
ware testing is inadequate for checking problem comprehension: if
a student develops both their tests and implementation with the
same misunderstanding of a problem, running those tests against
their implementation will not reveal their misunderstanding.

Flawed implementations often stem from underlying misunder-
standings (section 2.1) and some pedagogies (section 2.2) attempt
to address this by encouraging students to develop examples in the
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form of input–output assertions, independent of testing their imple-
mentations. However, without an implementation to run assertions
against, examples are impotent and do not provide feedback. Con-
sequently, students may be inclined to begin their implementations
prematurely (a process whose ample feedbackmaymask underlying
misunderstandings and instill a false sense of progress [26]).

Educators stressing the development of examples must therefore
provide students with some mechanism to assess their understand-
ing. In this work, we present such a mechanism. Examplar is a tool
that provides students with instant feedback on whether they have
correctly and thoroughly explored a problem independent of their
implementation progress. In the presence of this interface, we ask:
Did students in an accelerated introductory course...
rq 1: . . . choose to use Examplar?
rq 2: . . . ultimately submit more or better test cases?
rq 3: . . . ultimately submit more correct implementations?

2 THEORETICAL BASIS

2.1 Failures of Comprehension

Although comprehension is ubiquitously recognized as an indis-
posable component of problem solving, the computing education
literature is rife with studies in which student participants inadver-
tently make significant progress solving the “wrong” problems:

Whalley and Kasto (ITiCSE '14) [33]:
Interestingly, [three students] retrieved the ‘counting in-
tegers’ schema. The students did not recognize that their
program would not work and did not attempt to verify the
correctness of their solutions. All three students were redi-
rected by the interviewer who asked them if they thought
they should do anything to check that their solution was
correct.

Loksa and Ko (ICER '16) [21]:
Of all 37 participants, only 15 verbalized about reinterpreting
the prompt. This lack of reinterpretation was consistent
across both experience groups: [CS1 and CS2].
Participants often began coding without fully understand-
ing the problem, leaving them with knowledge gaps in the
problem requirements and causing them to later stop imple-
mentation to address the gaps.

Prather et al. (ICER '18) [26]:
The most frequent issue these students encountered was a
failure to build a correct conceptual model of the problem.
The feedback from Athene seems to have given [several par-
ticipants] a false sense of progression through the problem.
Futhermore, there are no measures between viewing the
problem and submitting source code to ensure that the stu-
dent understands what they’re being asked to do.

https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416


(1) From Problem Analysis to Data Definitions

Identify what must be represented and how it is represented.
(2) Signature, Purpose Statement, Header

State what kind of data the function consumes and produces.
(3) Input–Output Examples

Work through examples that illustrate the function’s purpose.
(4) Function Template

Translate the data definitions into an outline of the function.
(5) Function Definition

Fill in the gaps in the function template.
(6) Testing

Ensure your implementation conforms to your examples.

Figure 1: The Design Recipe, adapted from htdp [11].

2.2 Systematic Problem Solving

A potential way to improve students’ development of problem
comprehension is to train them in a methodology that explicitly
scaffolds the process. Our pedagogical context is the Design Recipe
from How to Design Programs (htdp) [11], a six-step process (sum-
marized in fig. 1) for producing an implementation from a spec-
ification, grounded in multiple theoretical foundations. The first
three of these steps specifically scaffold the development of problem
comprehension, and its last step prompts students to confirm that
their understanding matches their implementation.

At a high level, its steps provide a form of scaffolding [3] to
lead a student from a prose-based problem statement to a working
program. The scaffolding steps ask students to produce interme-
diate artifacts (signature/purpose, examples, code template) that
capture the problem at multiple levels of detail and abstraction. The
progression from data definitions to examples to code move the
student through different representations of the problem, providing
a form of concreteness fading [16] as students progress towards a
symbolic-form solution to a problem.

Completed sequences of design-recipe steps form worked exam-
ples [32] that students can leveragewhen considering new problems.
A student might refer to a design recipe example when writing a
new program on an already-studied datatype: this would focus on
the examples, templates, and code features of the example. When
asked to work with a new datatype, the recipe suggests higher-level
steps that a student can follow to make progress on the problem.

Several papers have begun to explore the positive impact of the
htdp recipe on students in different contexts. Fisler and colleagues
on multiple projects [13, 15] showed that htdp-trained students
made fewer programming errors than students trained in more
conventional curricula. Schanzer et al. [29, 30] have found improve-
ments in middle- and high-school students’ abilities to solve algebra
word problems after working with a version of the design recipe.

However, students trained to follow htdpmay not formulate any
examples or test their programs, and consequently struggle [14].
Furthermore, htdp does not include any inherent mechanism for
students to assess their own examples; examples are completely
impotent until the student completes their implementation (step
5), at which point they become the basis of a test suite (step 6).
Students may begin their implementations prematurely (at the
expense of problem comprehension) because the implementation

phase of problem solving provides feedback to a degree which
comprehension development does not [26]. A mechanism to assess
examples would enable students to check their comprehension
(thus supporting a type of self-regulation [21]) and might prevent
the tendency to implement prematurely.

3 ASSESSING TESTS & EXAMPLES

Input–output examples, like test cases, can be articulated as asser-
tions of the input–output behavior of functions. To assess whether
examples are valid and thorough explorations of a problem, we
adapt the classifier perspective of assessing test suites [2, 24]. This
view is appropriate for assignments consisting solely of determin-
istic, computable functions for which correctness is a well-defined
binary property. We discuss how these expectations limit Exam-
plar’s applicability in section 9. In this method, we assess suites
of assertions along two axes: validity and thoroughness. However,
unlike test cases, the intent of examples is not to test one’s imple-
mentation, but rather one’s understanding of the problem; we adapt
our assessment of thoroughness to reflect this difference.

3.1 Validity

A suite is valid if it accepts (i.e., its assertions pass) all correct
implementations. A suite may be invalid for a variety of reasons;
particularly, it may have:

(1) asserted incorrect behavior (e.g., sorting in the wrong direc-
tion),

(2) asserted underspecified behavior (e.g., asserting that a sort-
ing implementation is stable, if that was not specified),

(3) simply have failed to compile or run altogether.

We assess whether a suite is valid by running it against a particular,
representative correct implementation.

However, if the problem specification leaves any behavior un-
derspecified, it is necessary to run suites against multiple correct
implementations in order to accurately identify invalidity [35]. For
instance, consider a problem specification that reads:

Write a function, median, that consumes a list of numbers
and produces the arithmetic median.

This specification, as worded, leaves the behavior of median on
empty inputs underspecified; it may be just as correct for an imple-
mentation to produce an error as to return 0. In order for a suite to
be valid for all implementations of median, it must not include any
assertions involving empty input lists. We can accurately identify
such assertions as invalid by checking them against two correct
implementations (henceforth wheats [24]):

(1) one that produces an error on empty inputs,
(2) another that produces some answer (say 0) on empty inputs.

If a student asserts that implementations should produce an error on
empty inputs, their suite will reject the wheat that produces 0 (and
visa versa). Provided that the set of wheats completely exercises the
space of underspecified behaviors permitted by the specification,
accepting all wheats guarantees that a suite is valid and will accept
all correct implementations.



3.2 Thoroughness

A suite is thorough if it rejects (i.e., its assertions do not pass) buggy
implementations. We assess the thoroughness of a suite by run-
ning it against a curated set of buggy implementations (henceforth
chaffs [24]). The thoroughness of a suite is measured as the pro-
portion of chaffs it rejects. To assess test suites, the set of chaffs
should include subtly buggy implementations. To assess examples,
we take a different perspective: the set of chaffs should exercise
logical misunderstandings that students are likely to make. For
instance, to assess the thoroughness of examples for median, the
set of chaffs could include implementations of mean and mode.

4 EXAMPLAR

Examplar (pictured in fig. 2) provides a specialized version of the
usual Pyret [5] editing environment1 tuned for writing examples
as input–output assertions. Students write their assertions just as
they would in Pyret’s usual editor. However, Examplar replaces the
usual editor’s Run button with a Run Tests button, which assesses
the student’s suite for validity and thoroughness against instructor-
authored implementations (in the manner described in section 3).
Consequently, students can use Examplar to develop and assess
their examples independent of their implementation progress.

Pyret’s usual development environment provides extensive in-
formation in its presentation of errors and testing results2 [34].
For instance, if a test fails because the two halves of an equality
assertion are not equal, Pyret displays the values that each half eval-
uated to. This is undesirable in Examplar, as a student may be overly
tempted to intentionally write failing assertions to discover what
the behavior of wheats is, rather than closely read the assignment
specification to determine the behavior on their own. Our intention
is that Examplar supplements—but does not replace—the assign-
ment specification. Examplar therefore removes the interaction
pane and suppresses nearly all forms of program output. Examplar
only displays errors that prevent assertions from running.

5 RELATEDWORK

Prior work has attempted to incentivize software testing with on-
demand feedback. Stephen Edwards has conducted extensive re-
search on the classroom integration of test-driven development
(tdd) since 2003, specifically involving the automatic assessment
tool Web-CAT [8]. While we fundamentally share Edwards’s view
that testing can move developers from “from trial-and-error to
reflection-in-action” [7], our approach differs in key ways. Web-
CAT’s pedagogical context is tdd, in which the developer strictly
interleaves testing with implementation. This may tempt students
to write minimal tests in order to begin coding [10].

In Edwards’s work, the feedback which students receive on the
quality of their tests is typically in terms of code coverage [6, 20].
The coverage of a test suite is ostensibly a measure of how effective
the suite is at catching bugs. This measure is attractive because it
reflects professional software engineering practice [22] and is not
labor-intensive [6]. However, coverage is at best an indirectmeasure,
since it does not involve observing whether a test suite actually
catches bugs. Additionally, a growing body of evidence (including
1https://code.pyret.org/editor
2https://github.com/brownplt/pyret-lang/wiki/Error-Reporting,-July-2016

recent work from Edwards [4, 9]) challenges the assumption that
coverage correlates with the thoroughness of a test suite [1, 19]. Ex-
amplar directly measures the quality of test suites by running them
against actual buggy implementations (as described in section 3).

Prather et al. [25] ask students, before they begin their implemen-
tation, to correctly predict the output of the specified function for a
given input. As with Examplar, this intervention provides an oppor-
tunity for students to verify that their understanding of the problem
matches the prompt. However, Examplar differs from Prather et al.’s
work in several key ways. Examplar requires that students develop
their own input data for examples. Second, in addition to being valid,
Examplar-assessed examples must also be thorough explorations of
the problem’s interesting facets. Third, our students were welcome
to use Examplar at any point in their development process (or not
at all); Prather et al.’s intervention was strictly situated between
reading the problem prompt and developing a solution.

6 METHOD

We deployed Examplar in fall 2018 in an accelerated introduction to
computer science course offered at a selective, private U.S. univer-
sity. The course instructs students on the design recipe, algorithm
and data structure design, and algorithm (big-O) analysis.

Course Structure. The primary course activity was programming
projects. The 2018 offering of the course featured fourteen program-
ming projects. For all of these projects, students were given a prose
specification and were required to submit an implementation con-
sistent with that specification. For twelve of these projects, students
additionally submitted a test suite. We provided Examplar on the
ten projects that met the expectations outlined in section 3. The
projects included constructing a recommendation engine, modeling
a filesystem [12], deriving Huet zippers [17], and seam carving [31].

Demographics. Sixty-seven students completed the course. Most
were first-year students, approximately 18 years old, with some
prior programming experience (though not typically with prior
testing experience). About 1/6 identified as female. Admittance
to the course required successful completion of four assignments
roughly corresponding to the first fifth of htdp.

Pedagogy. The instructor asked students to follow the entirety
of the design recipe while completing all programming projects.
However, in requiring the submission of only a final implementation
and a test suite, the course essentially enforced only the last two
steps of the design recipe.

Previous iterations of the course attempted to apply the idea
of a “sweep” [23]: graded examples due several days before the
final submission deadline. The fast pacing of programming projects
precluded this requirement for most assignments, but it was hoped
the habit of early example-writing would stick. However, from the
guilty admissions of former students,3 we believed that for projects
lacking this early deadline, students authored most (if not all) of
their assertions after developing their implementation. We hoped
Examplar would be an effective alternative to strict early deadlines.

3In particular, the former students who were hired to be 2018’s TA staff!

https://code.pyret.org/editor
https://github.com/brownplt/pyret-lang/wiki/Error-Reporting,-July-2016


import my-gdrive("median-code.arr") as solution

median = solution.median

# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:

  median([list: 1]) is 1

  

  median([list: 1, 2, 3]) is 2

  

  median([list: 2, 4, 3, 1]) is 2.5

end

1

2

3

4

5

6 ▾

7 ▾

8

9 ▾

10

11 ▾

12

You caught 2 out of 4 chaffs:

🐛 🐛

The chaffs you caught are highlighted above in blue.

Mouseover a chaff to see which of your tests caught it.

2 ⁄ 2

WHEATS 

ACCEPTED

2 ⁄ 4

CHAFFS 

REJECTED

🐛 🐛

▾ Examplar ▾ File (median-tests.arr)
↴

Run Tests

Figure 2: Examplar provides a specialized editing environment for writing examples. Run Tests assesses the quality of the

suite by running it against wheats and chaffs. The suite above is valid (i.e., it accepts both wheats), but it is not particularly

thorough (it rejects only two of the four included chaffs); its assertions are also valid for a different summary statistic: mean!

6.1 rq 1: Do students use Examplar?

To determine whether students used Examplar, we monitored their
use of the tool, instrumenting Examplar to log the username and
suite contents each time a user clicked Run Tests.

rq 1.1: ...when it is not required? We wanted to see the degree
to which students used Examplar on their own volition; we thus
did not force students to use the tool. However, we feared students
might not try the tool at all merely as a matter of lack of exposure.
We therefore required that students use Examplar for the first as-
signment, but made usage optional thereafter. To judge whether
students valued Examplar on their own volition, we compare sub-
mission volume for this first assignment to that of subsequent
assignments.

rq 1.2: ...when no final test suite is required? On one assignment,
DataScripting, students were not required to submit a test suite,
but Examplar was still provided. This assignment was a collection
of seven, small, independent programming problems (adapted from
Fisler et al. [15]). Students submitted independent implementation
files for each part, andwe provided independent Examplar instances
for six of the seven parts. To judge whether students used Exam-
plar when no final test suite was required, we compare volume of
submissions for this assignment to the other assignments.

rq 1.3: ...throughout their development process? The Examplar
usage logs provide only a partial view of students’ overall devel-
opment process; students still needed to use Pyret’s usual editing
environment to develop their implementations and to run their test
suite against their own implementations. Instrumenting Pyret’s
usual editor was not feasible. The usage logs therefore do not tell

us how students used Examplar in relation to their other develop-
ment progress. We supplement our understanding with a voluntary
survey prompting students for feedback to “help us evaluate if
and how we use Examplar in future semesters”. In this survey, we
asked students to self-report their use of Examplar, relative to their
progress in developing their implementations.

6.2 Do final submissions change?

To determine whether Examplar induced changes in students’ final
submissions, we looked at the 2017 offering of the course as a
point of comparison. Aside from the introduction of Examplar, the
2018 offering of the course was virtually unchanged from the 2017
offering. Of the fourteen programming projects in the 2018 offering,
thirteen appeared in the 2017 offering. Both offerings used the
same entry process, featured similar lectures (which were held at
the same times), and provided similar resources for students. The
student demographic was almost nearly identical (except with 76
students, resulting in more total implementations and tests).

Naturally, there were some changes; we did not restrict the 2018
course staff from correcting significant issues as they saw fit. Nev-
ertheless, of the ten assignments for which Examplar was provided,
seven were functionally identical to their 2017 offering (table 1);
i.e., we are able to meaningfully assess the submissions for both
years using identical wheats, chaffs, and test suites. We use subsets
of these comparable assignments to judge whether the quality of
students’ final test suites and implementations improved. In sec-
tion 8 we discuss the limitations of this evaluation approach and
why we did not perform a more tightly controlled study.

rq 2: Do test suites change? Of the comparable assignments, five re-
quired the submission of a test suite. We use these five assignments



Table 1: The position and duration of the comparable assign-

ments in each year.

2017 2018

Assignment Ordinal Days Ordinal Days

DocDiff 1 3 1 3
Nile 2 4 2 5
DataScripting 4 3 4 2
Filesystem 7 4 6 2
Updater 8 7 7 7
JoinLists 10 7 9 7
MapReduce 11 7 10 7

to judge whether final test suite quality improved. This subset of
assignments is comprised of 320 final test suite submissions for
2017, and 269 final test suite submissions for 2018. We assess the
quality of these submissions using identical wheats and chaffs. We
consider the size, validity and thoroughness of test suites on these
assignments in turn:

rq 2.1: Does test suite size increase? To determine whether final
test suite size increased, we contrast the number of tests in suites
from each year. We hypothesized that, by gamifying the testing
experience, Examplar would induce students to write more tests.
We perform a two-sample t-test to determine if the average number
of test cases significantly differs between years.

rq 2.2: Does validity improve? We hypothesized that, in aggre-
gate, the validity of final test suites would improve significantly
from 2017 to 2018. Examplar’s feedback on validity is complete; i.e.,
if a test suite accepts all of the wheats in Examplar, it will accept all
of the wheats in the autograder used for final submissions. We sort
the implementations for each year into the dichotomous categories
of valid and invalid (section 3.1), and perform a χ2 test to determine
if the proportion of valid test suites differ significantly.

rq 2.3: Does thoroughness decline? The chaffs used to assess final
test suites included both mistakes of logic and implementation er-
rors. However, Examplar only included chaffs targeting the former,
so it is conceivable that students could misinterpret catching all
chaffs within Examplar as having “finished” their test suite. We
therefore must check whether the thoroughness of students’ test
suites declined. We compute the thoroughness of each final test
suite (section 3.2) and, conditioned on observing a decrease in the
proportion of chaffs caught between years, perform a χ2 test to
determine if the difference is significant.

rq 3: Do implementations change? We hypothesized that the direct
aid provided by Examplar for test development would indirectly
benefit students’ implementations. All seven of the comparable
assignments required the submission of implementations. This set
of assignments is comprised of 622 implementations from 2017,
and 522 from 2018. We sort the implementations for each year
into the dichotomous categories of correct and buggy using an
instructor-authored test suite, and perform a χ2 test to determine
if the proportion of correct implementations significantly differ.

Table 2: Did you use Examplar to write examples or tests Be-

fore, During, and After completing your implementation?

(Higher percentages are shaded darker.)

Usage Before During After

Rarely, or not at all 4.3% 4.3% 0.0%
A few times 21.7% 13.0% 13.0%
About half of the time 39.1% 17.4% 17.4%
Most of the time 21.7% 26.1% 17.4%
Almost always, or always 13.0% 39.1% 52.2%

Unsure 0.0% 0.0% 0.0%

7 RESULTS

We present our findings for each of the research questions stated
in section 6.

7.1 rq 1: Did students use Examplar?

Students used Examplar extensively on all assignments, clicking
Run Tests a total of 26,211 times. Figure 3 illustrates the distribution
of Examplar submissions per-student for each of the assignments
where Examplar was provided.

rq 1.1: ...when it was not required? Yes. Students used Examplar
extensively even after the requirement to use it was dropped. The
median Examplar-submissions-per-student for DocDiff of 22 (the
first and only assignment for which Examplar use was required)
was less than that of any other assignment.4 Only a small number
of students elected to not use Examplar thereafter: 4 students on
DataScripting, 3 on FileSystem, and 1 on Updater, MapReduce,
TourGuide, and FluidImages.

rq 1.2: ...when no final test suite was required? Yes. Figure 4 il-
lustrates the distribution of the number of Examplar submissions
per-student for each of DataScripting’s parts. Of 67 students who
submitted an implementation for at least one part, 64 used it for at
least one part and 48 used it for every part for which they submitted
an implementation. Examplar usage for this assignment is particu-
larly notable as students were given only two days to complete its
seven parts. Interpreted as a whole, Examplar usage for this assign-
ment was on par with that for the other assignments; the median
student submitted 33 suites to Examplar for DataScripting.

rq 1.3: ...throughout their development process? Probably. Twenty-
three students (approximately a third of the students enrolled in the
course) provided feedback on their Examplar usage in the volun-
tary course feedback survey. When asked, “Did you use Examplar
{before, during, after} developing your implementation?”, a majority
of students indicated they used Examplar at least “about half the
time” at all stages. Self-reported Examplar usage (table 2) increased
as implementation development progressed. Of course, students’
self appraisal of their own testing diligence should be regarded with
some skepticism, especially on a non-anonymous survey distributed
a month after the course ended.

4The individual parts of DataScripting received fewer submissions-per-student than
DocDiff, but each was a significantly smaller problem than any other in the course.
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7.2 Did final submissions change?

Yes. In aggregate, the quality of both test suites and implementations
improved from 2017 to 2018.

rq 2: Did test suites change? Yes. In aggregate, the validity of final
test suites significantly improved, without any degradation in their
thoroughness, on the five comparable assignments. Curiously, there
was no significant difference in the size of students’ test suites. We
consider the size and quality of these suites in turn:

rq 2.1: Did size increase? No, the number of assertions in final
test suites was approximately equal (fig. 5). With a Welch’s t-test,
we determined that the difference in average size between suites in
2017 and 2018 was not significant (t(523.79) = 0.66871, p = 0.504).
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Figure 5: The number of assertions in final test suites from

each year, rendered in the same manner as fig. 3.

rq 2.2: Did validity improve? Yes. In aggregate, final test suites
in 2017 were 4.8 times more likely to be invalid than suites in 2018.
Table 3 illustrates the proportion of invalid test suites for each of
the comparable assignments. Our χ2 test with Yates’ continuity
correction revealed that the validity of test suites on comparable
assignments significantly differed by year (χ2(1,N = 589) = 52.373,
p < 0.01, ϕ = 0.303, the odds ratio is 0.16).

Why were fewer final test suites invalid in 2018? As discussed
in section 3.1, there are three important causes of invalidity:

(1) If a suite accepts some—but not all—wheats, it is almost
certainly asserting underspecified behavior. Final test suites
in 2017 were 12.9 times more likely to have this form of
invalidity than suites in 2018.



(2) If a suite fails all of the wheats because one or more asser-
tions rejected the wheats, it may be that the student tested
either underspecified behavior or incorrect behavior. Final
test suites in 2017 were 6.1 times more likely to have this
form of invalidity than suites in 2018.

(3) A suite may fail to compile or run any of its assertions. This is
often indicative of the student failing to follow the template
for test suite submission (e.g., they tweaked the imports).
Final test suites in 2017 were 1.3 times more likely to have
this form of invalidity than suites in 2018.

Table 4 details the number of final test suites of each form of inva-
lidity for the comparable assignments in 2017 and 2018.

rq 2.3: Did thoroughness decline? No. Test suites in 2018 were
no less thorough (table 5). We can therefore be confident that the
aforementioned gains in validity did not come at the expense of
thoroughness. As we do not observe any decrease in thoroughness,
we do not perform a χ2 test.

rq 3: Did implementation quality improve? Inconclusive. Our χ2-
square test with Yates’ continuity correction revealed that the over-
all proportion of correct implementations (table 6) did not strongly
significantly differ by year (χ2(1,N = 1144) = 2.94, p = 0.086,
ϕ = 0.053, the odds ratio is 0.8).

Table 3: For each of the comparable assignments and in ag-

gregate: the proportion of the n final test suites which were

invalid.

2017 2018

Assignment Invalid n Invalid n

DocDiff 29.7% 91 9.3% 75
FileSystem 30.3% 76 9.7% 62
Updater 20.0% 75 6.1% 66
JoinLists 17.9% 39 0.0% 33
MapReduce 64.1% 39 3.0% 33

Aggregate 30.3% 320 6.7% 269

Table 4: For each of the comparable assignments and in ag-

gregate: the proportion of final test suites of each form of in-

validity: (1) accepting Some—but not all—wheats, (2) accept-

ingNone of thewheats because one ormore test cases failed,

and (3) accepting none of the wheats because an Error pre-

vented the suite from running.

2017 2018

Assignment Some None Error Some None Error

DocDiff 8.8% 8.8% 12.1% 0.0% 1.3% 8.0%
Filesystem 23.7% 6.6% 0.0% 4.8% 1.6% 3.2%
Updater 0.0% 16.0% 4.0% 0.0% 3.0% 3.0%
JoinLists 7.7% 7.7% 2.6% 0.0% 0.0% 0.0%
MapReduce 43.6% 20.5% 0.0% 0.0% 3.0% 0.0%

Aggregate 14.4% 11.3% 5.0% 1.1% 1.9% 3.7%

8 THREATS TO VALIDITY

We feel it is reasonable to attribute the differences we observed
between years to Examplar because of the extensive similarities be-
tween the offerings. However, it may be that these different cohorts
of students behaved differently due to an external factor. Ideally,
we would convince ourselves that this is unlikely by considering
submissions from additional years. This has practical difficulties.
First, course changes naturally accumulate; few of the assignments
in 2016 are functionally identical to those of 2018. Second, the pro-
cess of getting into the course changed significantly. In general, it
is problematic to intentionally refrain from changing offerings.

Alternatively, we could have performed a more tightly controlled
A–B study. We could have done this in a controlled lab setting, but
we felt that this would not be an authentic environment and hence
would lack ecological validity. We could have done this on the
course level, but felt would be unethical to essentially withhold
early grade information to half the students. Ultimately, we felt that
a cross-year comparison provided the most study utility, without
compromising our moral imperative to not hurt students.

Table 5: For each of the comparable assignments and in ag-

gregate: the number of chaffs used by Examplar, the Final

number of chaffs used to assess students’ final test suites,

and the proportion of Final chaffs caught, on average, by

students’ final test suites.

Chaffs % Final Rejected

Assignment Examplar Final 2017 2018

DocDiff 4 8 90.7% 99.0%
FileSystem 5 16 89.1% 90.7%
Updater 6 8 85.7% 85.2%
JoinLists 5 17 93.5% 89.3%
MapReduce 6 8 84.0% 89.0%

Aggregate 26 57 89.2% 91.0%

Table 6: For each of the comparable assignments and in ag-

gregate: the proportion of the n final implementation sub-

missions for each year that were correct.

2017 2018

Assignment Correct n Correct n

DocDiff 63.7% 91 74.7% 75
Nile 59.5% 74 68.6% 70
AddingMachine 38.2% 76 54.1% 61
Palindrome 86.8% 76 88.5% 61
SumLargest 84.2% 76 91.8% 61
Filesystem 77.6% 76 62.9% 62
Updater 28.0% 75 36.4% 66
JoinLists 64.1% 39 75.8% 33
MapReduce 69.2% 39 63.6% 33

Aggregate 63.2% 622 68.2% 522



9 THREATS TO GENERALIZABILITY

There are a handful of situations in which Examplar is poorly suited:

Correctness: In the classifier approach to test suite assessment,
correctness must be a well-defined, binary property of implementa-
tions. We could not provide Examplar for two assignments which
lacked this property. For instance, in Sortacle, students imple-
mented the function sortacle, which consumed a sorting function
and produced true if the function was correct (and false, other-
wise) by checking it against a large number of generated inputs. A
quality sortacle will be very good at labeling sorts accurately, but
this is an impossible task to do perfectly: it is always possible to
craft a sorting function so deviously buggy that no sortacle will
detect the flaw. Since it is impossible to craft a true wheat for such
an assignment, the classifier approach is inappropriate.

Expressibility: Examplar is not useful when articulating exam-
ples accurately is difficult or impossible. For instance, TourGuide
asked students to implement a function that consumes a graph of
locations, start points and end points, and produces the length of
the shortest path between those termini. Unfortunately, the Euclid-
ian distances between points is very often irrational and therefore
must be represented approximately in floating point. To complicate
matters, the accuracy of a summation of floating point numbers
depends on the order in which the numbers are added. Thus, it is
very difficult to express the right answer accurately on a computer.

Determinism: Examplar can be used for assignments that allow
for an element of non-determinism, a form of underspecified be-
havior. However, if the wheats and chaffs loaded into Examplar are
non-deterministic, Examplar may provide students with differing
feedback between runs of the same suite. The allowance of non-
determinism should therefore be realized by loading Examplar with
multiple wheats that differ in their behavior, but are individually
deterministic.

10 INDIRECT BENEFITS

In addition to the quantifiable improvements we observed in stu-
dents’ final submissions, Examplar provided a host of other benefits:

Reduced Load on Course Staff. On the assignments for which we
could not provide Examplar, course staffers reported an uptick in
questions that they felt could have been resolved by Examplar; this
also shows up in data gathered about the use of hours [28, §6.1.2].

More Robust Autograding. Providing Examplar instances forced
the course staff to finalize the wheats for each assignment before
the assignment went out to students. This process uncovered major
issues in four assignments, before they were released to students.

Teaching Underspecified Behavior. Underspecification was not a
learning goal of the course. However, it appears that some students
did gain an understanding of what underspecified behavior is via
their use of Examplar. We received several Piazza posts in which
students discovered they were testing underspecified behavior, e.g.:

My test below was rejected by a wheat. I think this might
because I’m checking for unspecified behavior ie. when an
empty string is passed into the content of a file. Are we
meant to assume that an empty string can never be passed
into the content of a file?

Blueno Bears Admirers

953 - Wheats Passed: 2 / 2
October 11, 2018 · 

Asha Misra, Rebecca Aman and 11 others 5 Comments

 · Reply · 33w

Hero Park who cares when you get 3/4 chaffs
2Like

•••

Figure 6: Examplar received attention on a university Face-

book page for anonymous admiration.

11 FUTUREWORK

We briefly discuss two essential directions for future work:

Over-Incentivation? Students seemed to enjoy Examplar’s gami-
fication immensely (e.g., fig. 6). Yet, on one assignment, FileSystem,
the proportion of correct implementations declined precipitously
in 2018. We attribute this decline to differences in the time allotted:
students in 2018 were allotted half as much time as students in 2017.
Nevertheless, both the validity and thoroughness of test suites for
this assignment improved in 2018. We believe Examplar may have
monopolized students’ time with test development—benefiting their
test suites, but to the detriment of their implementations.

We can adjust Examplar’s “game” via our selection of chaffs, but
this needs experimentation. Too few, and students may prematurely
conclude that they are “done” with testing (and, crucially, problem
comprehension). Too many, and students may divert too much time
to Examplar and too little towards developing their implementation.
Finding this balance is therefore essential future work.

Unaccounted Factors. Edwards and Shams [10] recently charac-
terized a corpus of student-authored test suites as being short (only
one student wrote more than 21 test cases), similar (89% of students
wrote exactly 21 test cases), and ineffective (their test suites missed
a “significant proportion” of bugs). However, the test suites we
reviewed (produced both with and without the aid of Examplar)
were generally long (students wrote an average of 39 test cases),
varied significantly in length (some students wrote more than 200
test cases), and were highly effective at catching bugs.

This contrast leads us to believe there are manifold unaccounted
factors that significantly affect students’ ability to write tests. The
suites we studied were produced in an environment differing from
Edwards and Shams in population, course level, prior experience,
language, problems, pedagogy, and tooling. A holistic understand-
ing of these factors is essential to moving our understanding of
testing pedagogy out of its infancy—but our significantly different
outcomes should provide an incentive for doing so.
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